
 1

EVALUATION OF SURROGATE MODELING AS A WAY TO REDUCE THE

COMPUTATIONAL BURDEN OF NUMERICAL SIMULATIONS
1

Mark A. Cowan* and Dr. Cary D. Butler

U.S. Army Engineer Research and Development Center
Information Technology Laboratory

3909 Halls Ferry Road
Vicksburg, Mississippi 39180-6199

INTRODUCTION

Real-world application domains such as engineering

design problems are computationally expensive. Some
problems require thousands of simulations, which places a
major burden on computing assets. Today’s machine
capacities have helped by affording users the ability to
run numerous scenarios to discover a range of possible
outcomes and to understand the influence of parameter
variation on a problem. These activities become problem-
atic as scenario sizes and complexities continuously
increase. As a result, the high-performance computers
often suffer at the hands of a combinatoric explosion.

A single simulation may require hours to days to

complete, and an exhaustive (“brute force”) exploration of
the design space for optimization purposes and “what-if”
analyses can easily call for thousands of simulations. An
extreme example involves numerical simulations for a
hurricane study for the Gulf of Mexico that was assigned
~4 million CPU hours per year over 3 years. This would
require full utilization of over 500 CPUs. This results in
millions of dollars being spent just for computing time
alone. The effort proceeded in brute-force manner,
exhaustively solving over an immense problem space,
often with very minor tweaks to the initial conditions.

This paper proposes a new approach to analyzing

engineering design problems, replacing the numerical
simulations with an emulation capability termed a
surrogate model. Developing a surrogate model requires
an accurate definition of the mapping between all of the
interesting input values (i.e., the input space) and the
associated output of the numerical simulation (i.e., the
output space). The approach assumes that the number of
simulations required to sufficiently cover this mapping is
much smaller than assessing all possible conditions. A
significant challenge in this approach involves the process
whereby the salient factors driving the real-world
phenomena are teased out through sensitivity analysis and
expert insight. A divide-and-conquer strategy (input
bisection) is used to subdivide the input space (within an
acceptable error bound), which leads to significant
reductions in the number of simulations required. The
partitioning of the input space is driven by the sensitivity
of the output space to changes to the initial conditions of

the simulation. Consequently, finer levels of partitioning
occur in sections of the input space that produce sig-
nificant changes to the output space. Conversely, sections
of input space that result in minimum changes to the
output are assessed at a much coarser level.

When the partitioning of the input space to locate the

minimum number of input-output pairs required to
properly represent the mapping of input to output is
completed, an artificial neural network (ANN) is trained.
The ANN has the ability to interpolate the numerical
model’s reaction to scenarios that were originally
excluded through the partitioning algorithm. A properly
trained ANN provides inferencing capabilities for the
surrogate model.

Visually interacting with the surrogate model pro-

vides the ability to explore the problem space and quickly
pinpoint the critical model parameters without the
expense of running hundreds of unnecessary simulations.
The surrogate model is refined by running additional
input/output mapping cases, lowering error thresholds,
and repeating the ANN training. This process is repeated
until an acceptable approximation of the problem is
obtained.

1. OVERVIEW OF SURROGATE MODEL

APPROACH

The purpose of this project is to devise

methodologies/techniques that are elegant, widely
applicable across many different solvers, and easy to
implement. These methodologies will significantly
reduce the number of high performance computer (HPC)
runs necessary to acquire solution approximations within
an acceptable level of accuracy. This paper presents a
five-step approach to constructing a surrogate model:

• Configure a numerical model MD for a problem
domain D.

• Define the set of all possible parameters P that define
the initial condition of the model. A subset of the
parameters, identified as p, is classified by the do-
main expert as critical parameters for the simulation.

--

1 Approved for public release; distribution is unlimited.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
DEC 2008

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Evaluation Of Surrogate Modeling As A Way To Reduce The
Computational Burden Of Numerical Simulations

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
U.S. Army Engineer Research and Development Center Information
Technology Laboratory 3909 Halls Ferry Road Vicksburg, Mississippi
39180-6199

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM002187. Proceedings of the Army Science Conference (26th) Held in Orlando, Florida on 1-4
December 2008, The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

 2

• Represent the geometry G that defines the spatial
makeup of D.

• Represent a series of time-steps T predicted by MD.

• Define variations of the input space (defined as I) as
defined by the product set of p, G, and T.

• Define the output space O by all possible results of
MD over I.

Therefore the goal of this effort is to develop an

emulator of MD, termed surrogate model SMD, that has the
ability to map I to O with similar accuracies to those of
MD. Acceptability of SMD is based on the error tolerances
provided by the domain expert. Error is defined as the
differences between MD and SMD in mapping I to O.

The underlying algorithm for the SMD is an artificial

neural network (ANN). Several variations of ANN
algorithms have been evaluated; however, for this paper
the work is based on the backpropagation neural network
algorithm. Various configurations of the hidden layer
have been evaluated that include changes from the
number of nodes to multiple hidden layers.

The five-step process for creating an SMD is outlined

as follows:

• Step 1 – Data Preparation: The goal of this step is
to identify a subset of I, denoted i, that best rep-
resents the input space in I. Ideally |i| is significantly
smaller than |I|. The reduction process by which i is
created involves filtering I based on data reduction
algorithms applied to p, G, and T.

– p reduction – Reduction based on p follows
from a bisection algorithm that continuously
subdivides p until the variations in MD output
are within tolerance. Partitioning is more prone
to occur in the complex sections of the input
space. For each parameter in p, domain experts
provide a value that indicates the precision used
to subdivide each dimension in the parameter
space.

– G reduction – The next step involves reducing
the geometry G by downsampling the number
of nodes that will be considered during training.
The resulting geometry is represented by g.
Note that the reduction occurs only on the inte-
rior nodes. The boundary nodes are left intact.

– T reduction – The final step involves down-
sampling the time steps to create a subset t.
Reducing the number of time-steps considered
occurs by having a domain expert provide a
distribution of importance versus time.
Importance is defined on an interval [0,1]. Each
time-step is considered for inclusion into i based
on its probability relative to 1—i.e., its
importance rating.

• Step 2 - Configuring the ANN: One of the
challenges involves properly configuring the ANN.
A small number of neurons has limited memory and
underfits the data, while one with too many neurons
has sufficient memory and possibly overfits or
memorizes the data. The objective is to identify an
ANN configuration that best approximates over I,
and yet generalizes well on unseen examples selected
across I.

• Step 3 - Training the ANN: This step involves
selecting ~90 percent of the cases (training data)
identified in i for training purposes. Training con-
tinues until the approximation ability of the ANN
reaches a predefined error threshold et or
convergence, whichever comes first.

• Step 4 - Validating the SMD against MD: Validation
occurs by running the ANN over a set of cases in i
that were not used during training (testing data). This
provides an indication of the network’s ability to
predict outside cases used for training. Secondly, the
ANN can be compared to MD based on random cases
selected across I. Finally, the MD and SMD can be
connected to visualization tools that allow domain
experts to see a side-by-side comparison of both
models running on selected cases of I. Results that
are unacceptable require additional work in Steps 1
or 2.

• Step 5 - Constructing the SMD: After the validation
of the ANN is completed, the next step involves
packaging it into a usable form. During this step, the
goal is to develop the ability to interface with existing
input files used by MD and tailor the output as
required by the end users. SMD s are implemented as
Windows applications with user controls for varying
the input values represented as p and time
represented as t. A graphical rendering of the SMDs
output reacts as the user varies p and t.

2. FROM NUMERICAL MODEL TO SURROGATE

MODEL COUNTERPART

Generally, the input space I to numerical solvers

defines the physics parameters P (usually through
boundary or initial conditions), the spatial aspects G
(through a geometry file associating various Cartesian
points in space, say [x,y,z], and their connectivities), and
the temporal dimension T (by enumerating the various
time-steps for which a solution is desired). Once defined,
a single set of physics parameters, geometry, and time
configuration is sent into the numerical solver for
processing. Upon successful completion, the numerical
model will issue an output value (or a set of values) for
each point in the geometry file for each time-step
represented as O. For example, within a temperature
problem, a single temperature will be returned for each
point within the geometry for each time-step, say, in

 3

10 minute increments throughout a full day (midnight to
midnight). Of course, the wide range of variation in
defining I can (and usually does) result in an enormous
number of possibilities, and limitations—whether due to
time, costs, or resources—may preclude investigating all
of these combinations. A strategy must be delineated t0
permit the solver to focus its efforts upon that portion of
the input space (whether it be the parameters, geometry,
time, or some significant combination thereof) and
capture the solutions there, while expending considerably
less effort on less interesting (or less challenging) portions
of the input space.

Consider the requirements of an ANN trying to learn

simple input-output pairs. Here the backpropagation
algorithm is described. Other architectures of neural
networks and other machine learning techniques may
work as well as or even better than the backpropagation
algorithm, depending upon the context of the underlying
physics problem. A collection of input-output pairs is
divided into two subsets: a training set (usually
comprising 90 percent of the collection) and a testing set
(comprising the remaining 10 percent). The neural
network runs through, say, 10,000 epochs where it
receives the training input, adjusts its weights internally,
and tries to predict the output. The known output is
compared with the predicted output, and the neural
network’s weights are then adjusted to minimize error.
Over time the network can often be trained to emulate the
training portion of the input-output set within a user-
defined error bound. Of course, noisy input sets can make
this much more difficult than more well-behaved sets and
may therefore require more training epochs to converge
within the error bounds.

Upon the completion of training, the weights (now

assumed as representative of the training set) are used to
test the neural network against the testing set. Generally,
since this set has never been seen and hence the neural
network has no history of training against this data, the
error rate should be somewhat higher than the
corresponding error rate on the training set. Although in
theory these input sets are as generic as the input
parameters to any function, they can be used to reflect the
geometry, the boundary (or initial) conditions, time, and
the associated output of a numerical solver. That is, the
ANN can be trained to serve as a surrogate model for the
numerical solver. The ANN in this case would adjust its
internal weights to imitate the physics being modeled
within the numerical solver. The input and output sets
play the same roles in both tools. Fig. 1 shows some
commonalities in the relationship between numeric
solvers and artificial neural networks.

As shown above, the backpropagation algorithm

when trained properly over input-output sets from a
numerical solver can serve as a function approximator to

the solver within the ranges of training. For instance,
backpropagation neural networks have served as
interpolation tools for decades within control theory
applications. The techniques work no differently here.

However, for all of the obvious parallels between the

numeric solver and the neural network, the differences
should not be ignored. The neural network as described
does not work apart, in a vacuum, away from the results
of the solver. Instead it uses the input and output of the
solver to imitate the solver. In other words, it does not
replace the numerical solver; it complements it and
reduces its use to a bare minimum. Or better yet, it
provides a second path to numerical solver quality
answers without the computational burden of actually
running the numerical solver. These input-output pairs
being used to train the neural network should collectively
be representative of the entire input parameter space
across all of the categories: boundary (or initial)
conditions, geometry, and time. A loss of
representativeness in any of these areas handicaps the
ANN and reduces its effectiveness along that dimension
of concern. These surrogate models cannot imitate solvers
for which the input-output pairs are missing. This word-
of-warning cuts both ways—in demanding
representativeness of the whole parameter space, and in
refusing any attempts at extrapolation outside the range of
training.

3. DATA REDUCTION OF NUMERICAL SOLVER

OUTPUT

A healthy juxtaposition of divergent aims exists here.

On the one hand, running the numerical solver
exhaustively over the full input space to the finest
resolution of parameter inputs would certainly be
representative of the input space. It would be costly and a
poor exercise in resourcefulness, but assuredly
representative. On the other hand, insight is required into

Fig. 1.

 4

the input space. A handful of numerical solver runs is
probably insufficient to provide the information for an
approximator to the numerical solver within the desired
error bounds. So this case would be highly efficient, but
information-poor. The goal is to identify a minimum set
of parameter value combinations that sufficiently
represent the input space. Within the input space, regions
may exist in which it is relatively easy to predict the
dynamics of the problem (and hence the output of the
numerical solver); this area should be sparsely sampled.
Other regions in the input space may require seemingly
inordinate amounts of numerical solver runs to adequately
reflect the dynamics involved; this area accordingly
should be highly sampled. The distinction between these
types of regions is essential to any reduction in the
number of numerical solver runs.

A bisection routine was used to exploit this desire for

high-resolution insight into these areas of very involved
dynamics while sampling sparsely in the regions of
simpler dynamics. Other techniques such as gradient
methods could have been substituted for the bisection
method and may prove somewhat more efficient in
particular cases; but bisection seems reasonable, relatively
efficient, widely applicable across very different types of
numerical solvers, easy to implement, and requiring little
formal justification to users.

The technique in one dimension proceeds as follows:

Consider parameter pi, from the set of input parameters P,
regarded as a driving factor in the numerical solver.
Parameter pi has minimum m and maximum M. The user
desires outputs from the numerical solver, say, no further
than 0.3 units apart. The numerical solver is run twice,
once for parameter pi equal to its minimum m and again
for parameter pi equal to its maximum M. Now the user
has the output values for each point in space for each
time-step, under these divergent input conditions m and
M. The output sets are compared point by point to
determine if the maximum difference over all points over
all times is greater than the 0.3 units desired. (Here an
average, a standard deviation, or comparison over just a
handful of key points is possible, depending on the
context of the problem.) Suppose at least one such
maximum exists that exceeds the 0.3 units. Then the
midpoint (m + M)/2 is used as the value of parameter pi in
the execution of the numerical solver. Similarly, its output
is compared with those of the preceding runs to its left
and right, and a decision is made whether to subdivide
again. In so doing, the bisection method builds a tree that
reflects the necessities of numerical solver runs over the
parameter space for this single variable pi. The same
technique carries over into multiple dimensions, each
variable considered separately for this purpose.

These driving factors, elsewhere suitably termed

critical parameters, are chosen with assistance from

subject matter experts, especially experts in the use and
execution of the numerical solver under consideration.
Thresholds can be placed upon these critical parameters to
ensure that the resulting division of the parameter space
reflects the desires of the experts for insight into
particular aspects of the numerical solver output. For
example, the value 0.3 above serves this threshold role for
the parameter pi. As shown in Fig. 2, these thresholds are
used via the bisection method to generate the model input
files. These files are then run through the numerical
solvers to generate a potentially huge training sample
database. This database, of course, is significantly smaller
than what would have resulted from an exhaustive
exploration of the full parameter space. However, even
with the thresholds in place and bisection providing a
more intelligent parsing of the input parameter space, the
file can still be in the tens of millions to hundreds of
millions of rows (one for each geometric point at each
time-step for all possible variations in the critical
parameters). How can one further perform data reduction
on this database of training samples? Again, the priority is
to reduce as much as possible and still retain
representativeness of the underlying input parameter
space.

Another data reduction step can be tied to the

geometry in which the solver is working. Through
interaction with the subject matter expert, it may be
decided that the complete boundary to the problem is
essential to its solution, while of the interior points only a
random 75 percent (or even 50 percent) is useful. Or
perhaps only a portion of the boundary is truly essential,
but more of the interior points are required to capture the
details of the dynamics. These decisions should be made
only in consultation with an experienced user of the
numerical solver codes or with keen insights into the
dynamics being modeled. However, the resulting
reduction in the number of rows in the training database
can be immense—potentially 30 to 40 percent. Similarly,
there may be a few time-steps within the solver run that
the user really wants to focus upon—the times
immediately before and during an unusual event. These
time-steps can be accentuated, while others, say, those
occurring later that are less interesting, can be decimated
through the use of a probability distribution on the time-
steps. Those times that are desirable to keep can be
associated with a 1 (i.e., 100 percent probability for
inclusion in the reduced training set), while others, which

Fig. 2.

 5

are less interesting, may be assigned any value between 0
and 1. The resulting distribution can then be run against
the training samples database to determine which rows
will be forwarded on to a reduced training samples
database and which left behind. For instance, if over the
full range of 100 time-steps, only the first 20 were
absolutely essential for inclusion, and of the other 80,
only 30 percent should be included, a distribution can be
built so that time-steps 1 to 20 have a probability of 1 and
time-steps 21 to 100 have a probability of 0.3. Then, on
average, one should get (20 + 24) 44 time-steps in the
reduced training sample, a reduction of 56 percent over
the original database. Of course, it should be emphasized
that caution should be exercised in all data reduction
cases to maintain representativeness of the full range of
parameters within that final reduced data set.

At this stage, the samples are divided into two

subsets—one serving as a training set for the neural
network, the other its test set. As mentioned above, the
training set usually composes 90 percent of the parent set,
with the remaining 10 percent going toward validation
through the testing component. These percentages,
although fairly canonical in the backpropagation
literature, may vary slightly. As Fig. 3 shows, the neural
network is trained until convergence criteria are met or its
maximum number of epochs is completed. Then the test
set is run through the network with its trained weights to
determine how well the network can predict outputs on
data it has never seen before. Here a key decision is made:
Is the predicted output acceptable? If yes, the neural
network can be treated as a surrogate model that can
emulate the numerical solver within the ranges of its
training. If not, however, several corrective paths lie open
to pursuit. These options may include, from major to
minor: (1) going back to the input of the numerical model
and modifying the thresholds, since as they currently
stand, they are ineffective at attaining the validated
surrogate model,(2) revisiting and loosening the decisions
made concerning inclusion and exclusion of geometry and
time data points within the original training database, (3)
altering the neural network algorithm from
backpropagation to, say, recurrent networks, (4) changing
the internal architecture of the current neural network by
increasing the number of nodes within the hidden layer,
and (5) modifying the neural network convergence
criteria, forcing it into a tighter bound OR increasing the
required number of epochs to execute during training. All
of these possibilities require modification to some portion
of the surrogate model construction process, some much
more significant than others; however, some fix (perhaps
a combination of some of the steps) is necessary since an
invalidated surrogate model serves no practical purpose,
and the user has gained no efficiencies by the additional
steps. Some examples follow.

Fig. 3.

4. STUDY DOMAINS

Three trials of this technique have been conducted

over widely divergent problem types. In the first, fairly
simplistic proof-of-concept scenario, a two-dimensional
model of the Herbert Hoover Dike was executed within
surface-water/ground-water flow code (WASH123),
where hydraulic conductivities and material types varied,
to attempt predicting the flow at 21 cross-sections. In the
second, a surface-water/ground-water code (ADaptive
Hydraulics (ADH)) was used to quantify thermal effects
caused by the effects of variations in albedo and the
specific heat of solids within a three-dimensional model.
The third involved using ADH to simulate the effects of a
contaminant trace in a harbor, where the eddy viscosity
and velocity varied.

4.1 Herbert Hoover Dike

This study case originated as a simple proof-of-

concept exercise based on WASH3D runs of the Herbert
Hoover Dike. The model had been executed under 11
material types and 3 hydraulic conductivity values,
resulting in 33 input values. The outputs were just 21
points that quantified the cross-sectional flow. As this
data had come from a design study, there were cases with
and without a dike structure in place. While only 22 cases
were available, which was far too few to build an
adequate surrogate model, this small data set served
remarkably well as a test-bed for performing sensitivity
analyses over variations in backpropagation architectures
(where the number of nodes in the hidden layer were
varied) and the number of training epochs. The number of
nodes in the hidden layer was varied from 15 to 70, and
the number of training epochs varied from 100 to 10,000.
Since the data sets were relatively small, this allowed for
an exhaustive creation of neural networks to perform
cross validation. In total, 4488 neural networks were built,
and the results were compared globally using the standard
deviation of the predicted to WASH3D output. One such
model is illustrated in Fig. 4 showing approximately 2
percent error of predicted to actual.

 6

Again, this demonstration was created more as a

sandbox to see if neural networks had anything to offer
this scenario, and in so proceeding, resulted in the
creation of numerous tools for performing sensitivity
analyses of the output. Because of the relative low
quantity of data, there was no need to perform bisection,
or data reduction techniques, here.

4.2 3D Thermal Problem

Efforts to emulate the output of a three-dimensional

thermal problem began the ongoing battle between an
avalanche of data and its reduction to a manageable, yet
representative amount. Rather than run this scenario
exhaustively, the bisection code was utilized to batch-
process the runs over variations in albedo and the specific
heat of solids. Over the range of albedo and the specific
heat of solids individually, the batch processing resulted
in 81 distinct cases (which served as input to the neural
network). In the preliminary stages, only one time-step
was analyzed to see if a trained neural network could
predict temperatures at a particular time, knowing only
what similar albedo and specific heat of solids models
were doing at that same time. As this severely reduced the
size of the data set, no data reduction techniques were
employed in these stages. Using the previously developed
sensitivity analysis tools, neural networks were developed
varying the number of training epochs and the number of
nodes in the hidden layer (from 3 to 30 in multiples of 3),
and turning momentum on and off. The results were
evaluated at a set of salient points, chosen across the full
range of points in space. This helped to determine the
optimal neural network architecture (here, 6 inputs-12
nodes in the hidden layer-1 output) and the number of
training epochs. Again, as this input set was rather small,
81 neural networks of this architecture were created (80 to
train, 1 to test) to evaluate the error associated with the
predictions. However, it was a static view, considering

only a single time-step out of the whole range of time
steps from the ADH run (Fig. 5).

Further investigations broke out of this static view

and considered multiple time-steps. Since the geometry of
this scenario contained 13703 nodes, widening out the
scope to multiple time-steps suddenly introduced millions
of rows of (potential) input data to the neural network for
training. Although bisection had been used in reducing
the parameter space even in the static case described
above, here further reductions proved necessary, such as
sampling within the geometry space and focusing only
upon the most interesting handful of the total time-steps
available. This scenario then served as a sandbox to test
out several innovative data reduction ideas. This case was
still limited in that it attempted to predict the temperature
at one time-step for a fixed albedo and fixed specific heat
of solids pairing, given several previous time-steps for all
81 cases. Even at this level of surrogate model creation
maturity, no attempt had been made to predict fully all
time-steps of one case, given all other rows as a training
set. This lack was later rectified by the Noyo contaminant
trace scenario described below.

Fig. 4.

Fig. 5. This represents an oblique view of the 3D
thermal problem, the upper showing ADH results and
the bottom showing corresponding neural network

output.

 7

4.3 Contaminant Trace

A third domain also utilized the ADH code. It

hypothesized that a pallet of a single contaminant had
been released a few hundred meters above where the
Noyo River flows out into the Fort Bragg Harbor to meet
the Pacific Ocean. Tidal effects were turned off for these
runs, as the study was to focus upon the river’s effects as
the water velocity and eddy viscosity values were varied.
Although the geometry was much simpler than the
thermal experiment above (having only 2689 nodes), the
full suite of 48 time-steps quickly compelled usage of
data reduction techniques. The bisection method (as
described above) resulted in 90 ADH runs. The original
database of training samples comprised 11.6 million rows.
The geometry component was reduced by using all
boundary nodes and 50 percent of the interior nodes. The
time component was similarly reduced by retaining the
first 33 time-steps, but using only 6 of the final 15. Taken
together, these reduction efforts resulted in the training
data set going from 11.6 million rows to 4.5 million rows,
a reduction of approximately 62 percent. Of the 90 ADH
runs, the reduced data from 89 are being used for training
a backpropagation neural network, and the remaining one
(located near the center of the parameter space) is being
used to test. In other words, information from all 89 ADH
runs over 39 time-steps are being used to train and predict
the behavior for one unseen case for all 48 time-steps. As
evidenced in Fig. 6, the dynamics for this case are rather
complex—certainly not a strawman figure. Sensitivity
analysis is currently underway for architectures with 30,
36, 44, and 88 nodes in the single hidden layer. Training,
although time-consuming, will eventually provide a
validated surrogate model for dynamics of the
contaminant trace under widely-varying water velocity
and eddy viscosity. Upon completion, this model can
serve as an acceptable replacement for ADH within error
bounds, and more importantly, can output answers within
seconds in imitation of an ADH case that would take 2-3
hours to execute.

5. BENEFITS ACCRUED BY OUR SOLUTION

Chief among the benefits of this technique is that

actual HPC run time was reduced significantly, while still
allowing the user the ability to predefine an acceptable
level of error in output and adapt the bisection runs to
acquire training set information appropriately. Sensitivity
analysis at various levels of the investigation, in turn,
reinforced confidence in the method.

 Once a surrogate model is developed, it can be
provided to a lay user to emulate the numerical models
within the ranges of training. This does not require any
specialized techniques or substantial experience in
numerical modeling to use. Since a surrogate model can

run and output its values within seconds as opposed to
hours for a numerical model, it certainly demonstrates
considerable time savings and lends itself much more
readily to design optimization efforts and what-if
analyses. A surrogate model typically runs on hardware
platforms as unassuming as laptops and minimally
configured personal computers. Specialized numerical

Fig. 6

 8

codes, on the other hand, often require resource-abundant
environments (such as afforded by the high performance
computing platforms), where costs can sometimes reach
$30 per minute. Taken together, the ease of use, the speed
of execution, and the relative low computing cost support
the widespread use of these high-fidelity surrogate models
in high-level planning efforts.

6. FUTURE WORK

Over the past 2 years, considerable effort has been

expended to investigate the feasibility of using surrogate
models as stand-ins for more complicated, more
expensive, and harder-to-use numerical models. When
difficulties arose, such as the data inundation that is a
natural by-product of these types of codes, many paths
were proposed and tested, and appropriate fixes were
developed. At present, three challenges serve to focus the
effort.

First, refining techniques to arrive at a “minimal”

input set could still improve global performance. At
present, the reductions are significant (on the order of 60-
65 percent often); however, other non-bisection
techniques (that may be model-specific) should be
investigated as well. Although a minimal set may never
be attained, the techniques should be implemented that
allow for a more rapid asymptotic approach toward such a
minimal set. Possibilities include statistical techniques
and some data mining algorithms.

Second, many steps are still highly sequential in these

methods. Some of this cannot be avoided—it is simply the
nature of the problems. However, high on the list of
priorities for future work is the need to refine the neural
network training process to fully leverage parallel
computing resources. Certainly the parallel nature of the
HPC resources fit admirably well with the described
sensitivity analyses.

Third, all portions of the surrogate model

construction process will be transitioned to the HPC
environment. As emphasized throughout, these types of
problems usually involve very large data storage
requirements. The data preparation step discussed above
needs to be able to quickly derive the reduced input space
i from I.

Success in any one of these areas could significantly

improve the construction of surrogate models for faster
utilization within high-level planning efforts. Together,
the process could become much more automated,
allowing the user to focus much more on different
engineering designs under consideration and less on the
computational tasks of data preprocessing.

CONCLUSIONS

As described, surrogate model construction offers a

new, less expensive, more computationally efficient path
in support of design optimization. Upfront, much effort
has to be expended to generate a surrogate model that can
emulate a numerical solver within given error bounds.
Once done, however, SMD can be used innumerable times
to interpolate for unseen cases, which may be useful for
design comparisons and what-if scenario analyses. This
feature, in itself, relegates the exhaustive, brute force
HPC runs to history. The learning curve for use of
surrogate models is much flatter than for the typical
numerical solver, which can require years of experience
to master. However, for the pedantic, the correctness of a
surrogate model can be demonstrated very quickly by
comparison to any within-range numerical solver output
previously unseen.

REFERENCES

Demuth, H., M. Beale, and M. Hagan, 2007: Neural

Network Toolbox 5 user’s guide. The MathWorks, Inc.,
Natick, MA. [Available online at http://www.agro.uba.ar/
users/paruelo/redes/Matlab%20y%20ANNs/nnet_version
%205.pdf.]

Hsieh, B. B., and T. C. Pratt, 2001: Field data recovery in
tidal system using artificial neural networks (ANNs).
Coastal and Hydraulics Engineering Technical Note
CHETN-IV-38, U.S. Army Engineer Research and
Development Center, Vicksburg, MS, 10 pp.
http://chl.wes.army.mil/library/publications/chetn/

Mitchell, T., 1997: Machine Learning. Boston:
WCB/McGraw-Hill, 414 pp.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, B. P.
Flannery, 1992: Numerical Recipes in FORTRAN: The

Art of Scientific Computing. Cambridge University Press
New York, 963 pp.

Rohwer, R., 1994: The Time Dimension of Neural
Network Models. ACM SIGART Bulletin, 5(3), Special

Section on Time in Neural Networks. 36-44.

FUNDING

The research described in this paper was funded through the

System-Wide Water Resources Program (SWWRP), Dr. Steven L.
Ashby, Environmental Laboratory, U.S. Army Engineer Research and
Development Center (ERDC), Program Manager. The authors would
like to acknowledge the assistance of and express our thanks to Ms.
Jackie Pettway, Coastal and Hydraulics Laboratory, ERDC, and Mr.
David Stuart, Mr. Randall Hand, Mr. David Richards, Mr. Bobby
Hunter, and Dr. Owen Eslinger, all of the Information Technology
Laboratory, ERDC. Their assistance contributed greatly to the ongoing
success of this project.

